
Stefan Baerisch, stefan@stbaer.com, 2025-06-24

Testing the Tests

1

Assess and Improve Your Python Testing Code

About Stefan

2

‣Software Developer, Product Owner,
Freelancer
‣I've been using Python since 2005 for a wide
range of tasks – from data wrangling and
backend services to test automation.
‣Location: I'm based in Munich, another city
that, like Prague, is famous for its excellent
beer
‣Get in touch: stefan@stbaer.com

What We'll Cover Today

‣What Makes a "Good" Test?
‣Exploring the concepts of
effectiveness, efficiency, and
coverage

‣An Introduction to Mutation Testing
‣How to "test your tests" to find hidden
weaknesses.

3

4

Good Tests?
Coverage?
Better tests!
Mutation Testing
Last Words

The 5 E's of Test Quality

5

‣The easy E's

‣ (Some) tests exist.

‣ The tests are executed regularly .

‣ There are enough tests (either in total or in
terms of coverage)

‣The essential E's

‣ Efficiency: Do they run quickly and provide
fast feedback?

‣ Effectiveness: Do the tests actually find
bugs?

Test Efficiency

‣Automation is necessary for efficiency!
Automated tests are repeatable and more
efficient. Manual testing is expensive and
prone to error.
‣Only Fast Tests run often: The more
often a test runs, the earlier it finds errors
‣Tests need to be maintainable.
Otherwise, they get left behind

6

An efficient test an be created, executed and maintained with
minimal effort

Implementation Efficiency & Test Quality Pyramid
‣A few End-to-End Tests:
‣Complete user workflows from start to finish.
‣Slowest tests, often involving UI automation.
‣(more) Expensive to create and maintain.

‣Some Integration Tests:
‣Interaction between components, Contracts
between services
‣May involve real databases or APIs.

‣Many Unit Tests:
‣Single functions or methods in isolation.
‣Extremely fast, simple to implement when
system is designed with testing in mind.

7

Effectiveness - Function Test Characteristics

‣Isolation: A failure in one test should
never cause another to fail.
‣Single Responsibility: test function
verifies one specific behaviour.

‣Meaningful Assertions and
Expected Values
‣Coverage?: You can only find bugs
in the code you actually test.

8

An effective test suite locates bugs

9

Good Tests?
Coverage?
Better tests!
Mutation Testing
Last Words

What is Test Coverage?

‣What it is: A measurement of which
lines, branches, and input combinations
of your source code are executed by
your test suite.
‣ Mostly used on the unit test level

‣What it's good for: Getting an idea of
the portion of the code that is tested
‣What it's not good for: Telling you that
your tests are effective

10

Coverage Problem 1 : Misleading Percentages

11

Coverage Problem 2: Misleading Percentages

‣Goodhart's Law, expanded by Marilyn
Strathern: "When a measure becomes
a target, it ceases to be a good
measure"
‣If you judge developers by lines of code,
you will get lines of code. Not working
software.
‣If you judge by coverage, you will get
coverage, not effective tests

12

Coverage Types

13

‣Line Coverage: Has every
executable line of code been run at
least once?"
‣Branch Coverage: For every if/while
statement, have both paths been
executed in tests?
‣(Simple) Condition Coverage: For a
complex decision like if A and B:,
has each individual condition (A, B)
been evaluated to both True and
False?
‣Path Coverage: Has every single
possible route through a function
been executed?

Coverage Types Example

14

‣How many tests do we need to achieve coverage?

15

Good Tests?
Coverage?
Better tests!
Mutation Testing
Last Words

Beyond Basic Coverage - Getting Effective Tests (1)

‣Coverage is necessary, not sufficient:
Missing Coverage means no effective Tests

‣Use Path Coverage as a Thinking
Aid
‣How to improve our tests?
‣Approach 1: Get tests for as many
relevant usage scenarios and test
values as possible
‣ This will also raise condition / path

coverage
‣Approach 2: Test the tests themselves

16

Beyond Basic Coverage - Getting Effective Tests (2)

17

Mutation
Testing

Check if Tests
find Bugs

Property-Based
Testing

Automated

Table-Driven
Testing / Test

Parametrisation

Behaviour Driven
Testing (BDD)

Get more Testing
Inputs Tested

Manual

Better Test Values: Table-Driven Testing

18

Better Test Values: Behaviour-Driven Development

19

Better Test Values: Property-Based Testing

20

21

Good Tests?
Coverage?
Better tests!
Mutation Testing
Last Words

The Idea Behind Mutation Testing

22

Mutation Testing mutates (changes)
your code
It introduces small mistakes, then
runs the tests against the new,
mutated code.

Types of Mutations

‣Basic Operators:
‣ Arithmetic Operator Replacement: + → -, * → /
‣ Relational Operator Replacement: > → >=, == → !=
‣ Logical Operator Replacement: and → or
‣ Constant Replacement: True → False, 0 → 1,

"hello" → ""

‣Advanced Operators:
‣ Statement Deletion: Remove an entire line of code.
‣ Decorator Removal: Remove an @decorator.
‣ Keyword Replacement: break → continue
‣ ...

23

mutmut Mutation Overview

24

Too much information 😉
Take away: Many Mutations

Mutation Testing Example - Survival

25

Kille
d

Not C
overed

Tim
eout

Susp
icio

us

Su
rvi
ve
d

Skip
pedMutants

ran

Mutation Testing Example - Killed

26

Kil
led

Mutate to -
(a minus b)

The Mutation Testing Cycle

27

‣Configure & Run: Set up your mutation
testing tool and run it on your codebase.
‣Analyze Survivors: The tool reports which
mutants survived.
‣Improve Tests: For each meaningful survivor,
write a new test that "kills" it.
‣Repeat: Re-run the mutation tool

Mutation Testing Library Overview

28

Start here Go here if curious or a missing something

Limitations of Mutation Testing

29

‣The Equivalent Mutant Problem:
‣ An "equivalent mutant" change the outcom.
‣ Toy example: x = y; return x*x;
‣ is mutated to x = - y return x*x

‣ These mutants can never be killed,.
‣Computational Cost: Running the test suite for every
mutant can be very slow.
‣Unproductive Mutants: Some mutants are technically
killable but not useful to kill. For example, text of a log
messages

Mutation Testing Performance Considerations

30

‣Don't Run on Every Commit
‣Target Critical Code: Focus your efforts on the
most critical, complex, or high-risk modules
first.
‣Use Coverage Data: Tools like mutmut can use
coverage data to only run the tests that
actually execute the mutated line of code.
‣Incremental / Diff-Based Analysis: The most
advanced strategy for CI is to only mutate the
lines of code that have changed in a specific
pull request.

31

Good Tests?
Coverage?
Better tests!
Mutation Testing
Last Words

Conclusion

32

efficient,

Automation

Coverage
Isolated, Single Concern

Relevant Testing Values

Have effective tests !

Thinking

Tools

Tables

BDD

mutmut

hypothesisproperties

mutations

baseline, not goal
Consider Path Coverage Essential, not sufficient

Testing the tests
Testing Pyramid

Unit Tests

Call to Action

33

‣Try Mutation Testing (mutmut)
‣Try property-based testing
(hypothesis)
‣Write a testing table
‣Check the path coverage of your
favourite complex function

Stefan Baerisch, stefan@stbaer.com, 2025-06-24

Thank you!

34

