e

Testing the Tests

Assess and Improve Your Python Testing Code

1 def add(a, b):
4 return a+b

4 def test_add():
7 assert add(2,2)=4

7 def test_add_fail():
5 assert add(2,2)=

Stefan Baerisch, stefan@stbaer.com, 2025-06-24

About Stefan

>»Software Developer, Product Owner,
Freelancer

>|'ve been using Python since 2005 for a wide
range of tasks — from data wrangling and
backend services to test automation.

>Location: I'm based in Munich, another city
that, like Prague, is famous for its excellent
beer

»Get in touch: stefan@stbaer.com

What We'll Cover Today

»*What Makes a "Good" Test?

~Exploring the concepts of

effectiveness, efficiency, and
coverage

»An Introduction to Mutation Testing

»How to "test your tests" to find hidden
weaknesses.

--
Good Tests?

The 5 E's of Test guality *

»The easy E's

> (Some) tests exist.

> The tests are executed regularly .

> There are enough tests (either in total or in

terms of coverage) E E
E

»The essential E's ’

> Efficiency: Do they run quickly and provide
fast feedback?

> Effectiveness: Do the tests actually find
bugs?

Test Efficiencz *

An efficient test an be created, executed and maintained with
minimal effort

» Automation is necessary for efficiency!
Automated tests are repeatable and more
efficient. Manual testing is expensive and
prone to error.

*Only Fast Tests run often: The more
often a test runs, the earlier it finds errors

» Tests need to be maintainable.
Otherwise, they get left behind

Implementation Efficiency & Test Quality Pyramid

» A few End-to-End Tests:

»Complete user workflows from start to finish.
»Slowest tests, often involving Ul automation.
>(more) Expensive to create and maintain.

»Some Integration Tests:

>|nteraction between components, Contracts
between services

~May involve real databases or APIs.

»Many Unit Tests:

>»Single functions or methods in isolation.
»Extremely fast, simple to implement when
system is designed with testing in mind.

Effectiveness - Function Test Characteristics

An effective test suite locates bugs

»|solation: A failure in one test should
never cause another to fail.

>Single Responsibility: test function
verifies one specific behaviour.

*Meaningful Assertions and
Expected Values

~Coverage?: You can only find bugs
in the code you actually test.

—-—

Coverage?

What is Test Coverage? *

*What it is: A measurement of which
lines, branches, and input combinations
of your source code are executed by
your test suite.

> Mostly used on the unit test level

*What it's good for: Getting an idea of
the portion of the code that is tested

*What it's not good for: Telling you that
your tests are effective

10

Coverage Problem 1 : Misleading Percentages

def apply_staff_discount(price: float, is_staff: bool) -» float:
if is_staff:
return price * ©.80
return price

from discounts import apply_staff_discount

def test_apply_staff_discount_runs():
apply_staff_discount(price: 100.0, Iis_staff: True)
apply_staff_discount(price: 100.0, Iis_staff: False)

S S S S S S S S D S S S S S S S S S S S S . . tests cover‘age S e S S S S S S S S S S S S S S S S S S
coverage: platform darwin, python 3.13.0-final-0

Name Stmts Miss Branch BrPart: Cover
discounts.py 4 0 2 0 100%
TOTAL 4 0 2 0 100%

11

Coverage Problem 2: Misleading Percentages *

»Goodhart's Law, expanded by Marilyn
Strathern: "When a measure becomes
a target, it ceases to be a good
measure"

>|f you judge developers by lines of code,
you Will get lines of code. Not working
software.

>|f you judge by coverage, you will get
coverage, not effective tests

12

Coverage Types *

>Line Coverage: Has every
def get_clearance_string(is_manager: bool, executable Lline of code been run at

is_senior: bool, |a5st once?"
has_rw_access: bo

Sl aEREEE S Mk E e *Branch Coverage: For every if/while
statement, have both paths been
if is_manager: executed in tests?

if is_senior: >(Simple) Condition Coverage: For a

GLeAranCe, =3 Ny complex decision like if A and B:,
else: . . . -
has each individual condition (A, B)
clearance = "Manager"
been evaluated to both True and
if has_rw_access: False?
clearance += " (RW)" »Path Coverage: Has every single

possible route through a function

return clearance been executed?

13

Coverage TyEes Example *

»How many tests do we need to achieve coverage?

Coverage Parameter Value Expected
Criteria is_manager is_senior has_rw_access Result
Sen M
def get_clearance_string(is_manager: bool, Statement TRUE TRUE TRUE (I:\';V) anager
is_senier: boat; Coverage TRUE FALSE FALSE Manager
has_rw_access: bo Py E—
clearance = "Staff" Branch TRUE TRUE TRUE (;\’,‘v) g
if is_manager‘: Coverage TRUE FALSE FALSE Manager
if is_senior: FALSE FALSE FALSE Staff
clearance = "5en Manager" Condition TRUE TRUE TRUE Sen Manager
else: (RW)
clearance = "Manager" Coverage FALSE FALSE FALSE Staff
‘ FALSE FALSE FALSE Staff
if has_rw_access:
e FALSE FALSE TRUE Staff (RW)
Path TRUE FALSE FALSE Manager
return clearance Coverage TRUE FALSE TRUE Manager (RW)
TRUE TRUE FALSE Sen Manager
Sen Manager
TRUE TRUE TRUE (RW)

14

Better tests!

Beyond Basic Coverage - Getting Effective Tests (1)

»Coverage is necessary, not sufficient:
Missing Coverage means no effective Tests

»Use Path Coverage as a Thinking
Aid
>How to improve our tests?

»Approach 1: Get tests for as many
relevant usage scenarios and test
values as possible

> This will also raise condition / path
coverage

»Approach 2: Test the tests themselves

16

Beyond Basic Coverage - Getting Effective Tests (2)

Manual Automated

Table-Driven

Testing / Test
Get more Testing Parametrisation Property-Based
Inputs Tested Behaviour Driven Testing
Testing (BDD)
Check if Tests Mutation

find Bugs Testing

Better Test Values: Table-Driven Testing

import pytest
from addition import add

@pytest.mark.parametrize(™a, b, expected_result", |

(2, 3. 5);
(5, 7T, 12},
def add(a, b): 2usages L=, % B,
return a + b (18, -5, 5),
(-5, -5, -18),

1)
def test_add_with_various_numbers(a, b, expected_result):

result = add(a, b)
assert result == expected_result

18

Better Test Values: Behaviour-Driven Development

Feature: Addition
In order to do basic math
As a user
I want to add two numbers

Scenario Outline: Add two numbers
Given I have the number <numl>
And I have the number <num2:
When I add them together
Then the result should be <output:

Examples:
| numl | num2 | output |
| 2 [I
| 5 | 7 | 12 I
| -1 11 | O I
| 1@ | -5 L5 |
| -5 | -5 | -18 |

import pytest
from pytest_bdd import scenarics, given, when, then, parsers
from addition import add

scenarios('addition.feature')

@pytest.fixture B8 usages
def context():
return {'numbers': []}

@given(parsers.parse('I have the number {number:d}'))
def have_a_number(context, number):
context['numbers'].append(number)

@when('I add them together')
def add_numbers(context):
context['result’'] = add(context['numbers'][0], context['numbers'][1])

@then(parsers.parse('the result should be {result:d}'))
def check_result(context, result):
assert context['result'] == result

Better Test Values: Property-Based Testing

def add(a: int, b:

return a + b

int) - int:

@given(st.integers(), st.integers())
def test_addition_is_commutative(a, b):
assert add(a, b) == add(b, a)

@given(st.integers())
def test_addition_identity(a):
assert add(a, b: @) == a

@given(st.integers(), st.integers())

def test_addition_returns_integer(a, h):
result = add(a, b)
assert isinstance(result, int)

@given(st.integers(), st.integers(), st.integers())
def test_addition_is_associative(a, b, c):
print(a,b,c)
assert add(add(a, b), c) == add(a, add(b, c))

Mutation Testing

The ldea Behind Mutation Testing

Mutation Testing mutates (changes)
your code

It introduces small mistakes, then
runs the tests against the new,
mutated code.

I MUTANT I

22

Types of Mutations

» Basic Operators:
> Arithmetic Operator Replacement: + = -, * = /
» Relational Operator Replacement; > = >=, == 2 I=
» Logical Operator Replacement: and — or

» Constant Replacement: True — False, 0 — 1,
Ilhel.loll — nn

» Advanced Operators:
» Statement Deletion: Remove an entire line of code.
» Decorator Removal: Remove an @decorator.

> Keyword Replacement: break = continue

>

< <~
+ TRUE

23

Category
Literals - Number

Literals - String
Literals - Boolean
Literals - None
Operators - Arithmetic

Operators - Comparison
Operators - Logical
Operators - Unary

Operators - Augmented Assignment

Keywords - Membership

Keywords - Identity

Keywords - Control Flow

Keywords - Control Flow

Function & Method Calls - Argument Removal
Function & Method Calls - Argument Replacement

Function & Method Calls - dict Keyword

Function & Method Calls - String Methods
Function & Method Calls - Copying

Data Structures - Lambda Body
Data Structures - Match-Case
Assignments - Simple Assignment
Decorators

mutmut Mutation Overview

Original Code Mutated Code
Example Example(s)

X = 10 X= 11

s = "foo" "XXors ="FOO"

is_active = True is_active = False

x = None x=""

a+b a-b

a<b a<=b

aandb aorb
~aornota a

x+=1 x-=1lorx=1
xiny xnotiny
Xisy X is noty
break return
continue break

foo(a, b) foo(b) or foo(a)
foo(a) foo(None)
dict(key=val) dict(keyXX=val)
"a".lower() "a".upper()
deepcopy(obj) copy(obj)
lambda: None lambda: O

match x: case A(): match x: case A(): ...
x = "value" x = None

@loging_required(True)

Explanation

Increments numeric literals by 1.

Modifies string literals (e.g., adds
prefixes/suffixes, changes case).

Swaps True and False.

Replaces None with an empty string."

Swaps arithmetic operators (e.g., + to -, *to /).

b *--ifies comparison operators (e.g., < to <=, ==

assignn._

Swaps in with notu..
Swaps is with is not.
Replaces break with return.

Replaces continue with break.

Removes one argument from a function call.
Replaces an argument with None.

Modifies a keyword argument in a dict()
constructor call.

Swaps symmetric string methods (e.g., lower to
upper, Istrip to rstrip).

Replaces deepcopy with copy.

Replaces the body of a lambda returning None
with O, and vice-versa.

Removes a case statement from a match block.
Replaces the assigned value with None.
Remove decorator

24

Mutation Testing Example - Survival

$mutmut run
.. Generating mutants
done 1in 53ms
def add(a, b): : Running stats
return a + b done
“ Running clean tests
done
: Running forced fall test
done
def test_add_with_positive_and_zero(): Running mutation testing
assert add(= 5, b @) == 1/1 0= 0 6 &6 @1

.Y
33.97 uTatijxsfsejnd)
def test_add_with_negative_and_zero():
i x9
assert add(-3, b 8) == -3 ?}(\))
O

Mutation Testing Example - Killed *

Mutate to -
(a minus b)
Smutmut run
def add(a, b):/// . Generating mutants
return 4 + b done in 53ms
. Listing all tests
from my_project.addition import add Found 1 new tests, rerunning stats collection
* Running stats
def test_add_with_positive_and_zero(): done
assert add(a: 5, b: @) == “ Running clean tests
done
def test_add_with_negative_and_zero(): : Running forced fall test
assert add(-3, b: @) == -3 done
Running mutation testing
def test_add_positives(): =1/1 10 08 @We @6 o
assBpt addcalE. B 3T = 34.63 m)tations/second
O

&

The Mutation Testing Cycle

»Configure & Run: Set up your mutation
testing tool and run it on your codebase.

»Analyze Survivors: The tool reports which
mutants survived.

»Improve Tests: For each meaningful survivor,

write a new test that "kills" it.

»Repeat: Re-run the mutation tool

/ RUN

ANALYZE

IMW
2%

27

Mutation Testing Library Overview *

Start here Go here if curious or a missing something
mutmut Cosmic Ray
Philosophy & i
PRy Designed for simplicity and ease of use. & powerfuli, gy ek
Ease of Use "compiler for mutants."
Configuration pyproject.toml| or setup.cfg dedicated config file.
Supported Test
PP Primarily pytest and unittest. Test runner agnostic.
Runners
Mutation Engine Modifies the source code copy MPREIRS BDSTGREE SYRRE tras Rl

level mutants

Console output with emojis &'. Can
Reporting generate a HTML report. TUI for
detailed inspection

Reports in various formats (HTML,
JSON,.)

Yes, can be distributed across
machines

Parallel Execution Yes

Limitations of Mutation Testing

»The Equivalent Mutant Problem:
> An "equivalent mutant" change the outcom.
> Toy example: X =y; return x*x;
> is mutated to x = -y return x*x
> These mutants can never be killed,.

» Computational Cost: Running the test suite for every
mutant can be very slow.

»Unproductive Mutants: Some mutants are technically
killable but not useful to kill. For example, text of a log
messages

29

Mutation Testing Performance Considerations *

*Don't Run on Every Commit

»Target Critical Code: Focus your efforts on the
most critical, complex, or high-risk modules
first.

»Use Coverage Data: Tools like mutmut can use
coverage data to only run the tests that
actually execute the mutated line of code.

Incremental / Diff-Based Analysis: The most
advanced strategy for Cl is to only mutate the
lines of code that have changed in a specific
pull request.

30

Last Words

Conclusion

Consider Path Coverage Essential, not sufficient

baseline, not goal N\
_ Coverage
|solated, Single Concern
— /

Have efficient effective tests!
/ N

Automation Relevant Testing Values
/ Testing the tests %inking _Tables
Testing Pyramid —
~Unit Tests sbD
Tools — properties — hypothesis

\
mutations — mutmut

32

Call to Action

*Try Mutation Testing (mutmut)

*Try property-based testing
(hypothesis)

*Write a testing table

»Check the path coverage of your
favourite complex function

Thank you!

Stefan Baerisch, stefan@stbaer.com, 2025-06-24

34

