(A) SQL for Django

== 11111111
Stefan Baerisch, stbaer.com, = LLLLLLLT
Virtual DjangoCon 2-6 June 2021 STttt

http://stbaer.com

Some backqground

>Using Python since ~ 2006
~also Go, Rust, Java
>Django since ~ 2017
*PM / Business Analyst, Developer
>Django is not my focus

Motivation for the talk

You can do (almost) everything you want to do with a
database in Django's ORM

*You don't want to do (almost) everything you can in
Django's ORM

-Using SQL with Django is possible and has benefits

Django
ORM

ORM and SQL. again

Scenarlo | ORM I

Great Code / Data
Integration

Some care and

Gathering | |
Obiject | checksrequired |
Hierarchies § v

- >,&‘—‘—F—4‘r-—“ —_—

e —_——— e —

SQL to ORIVI
thinking required

S —— — e — =

Analytic
Queries

Bollerplate per
Object

H— #&f“w“

Stlll mapplng
efforts, may be
worth it

S —
e i ——— MM —

SQL thlnklng
required

= ——

Working with the Django ORM

Example Database

app_customer

> id bigint

firstname varchar(100)

app_salesperson

firstname varchar(100)

> id bigint

. lastname varchar(100) . lastname varchar(100)

integer » - commission
A A

customer id:id

. discount integer

sales petson id:id

app_product app_productpart
app_order 30id bigint . 2 id bigint
. 2id pIgint s Name varchar(Z250] s NAame varchar(250)
+ Created timestamp withtime zone « - price Integer + - Weight integer
fulfilled timestamp with time zone A A
. 7 customer_id bigint
.0 sales_person_id bigint produqt_id:id productgart_id:id
app_productpart_products
app_orderposition 55 id higint
. 7id digint + 7 productpart_id bigint
« - quantify integer . ¢ product_id bigint
+ rorder_id bigint
+ 2 product_id bigint

Working with data - Django ORM use cases

Scenario | éé 't

i . e —— S ———
e = === — — L ————— ——— _—
—

_— -
- _— e ———a—— = —
- E— e em— e = _ = =

e — —_—

CRUD ‘; create(), get()/filter() / delete()

- - -
— _ — — — — g — e e el e e — g
S —_— _ —— —_— — — —' — _ L —— — — _ — e —
— R — — — — i_,_ , 4-7 — _
e R e e ——— - = === === — —

Gathering | Attribute Access via Forein Keys()

i
Object ’i select_related()
Hierarchies |

_ e e e e ———— e = — e
—ETT— o - — —— — —— e
— — = e — — = —
e ———— e R — e — - — -
_ -
e e —_—
i = = === e
——— e — _ —— — _

Analytic I annotate() / aggregate() /Q/F ...
Queries

=

CRUD Operations

cust = m.Customer(firstname="Ex", lasthname="Ample", discount=10)
cust.save()

cust = m.Customer.objects.filter(firsthame="Ex").first()
cust.discount += 1
cust.save()

cust.delete()

Getting Specific Filters

r = m.Customer.objects. \
filter(discount__ gt=2, discount__|t=4). \
values('lastname’). \
order_by('discount’)

q = r.query

SELECT "app_customer"."lastname”
FROM "app_customer”

WHERE ("app_customer"."discount” > 2
AND "app_customer"."discount" < 4)
ORDER BY "app_customer"."discount” ASC'

The Q and F of complex (1/2)

r = m.Customer.objects. \
filter(discount= F('discount’) * F('discount’))

q = r.query

SELECT "app_customer"."id",
"app_customer"."firsthame",
"app_customer'."lasthame”,
"app_customer'."discount”

FROM "app_customer”

WHERE "app_customer"."discount” =
("app_customer"."discount" *
"app_customer"."discount")’

10

The Q and F of complex (2/2)

r = m.Customer.objects.filter(
Q(discount__It=7) | Q(discount__gt=12)

)

'SELECT "app_customer"."id",
"app_customer"."firsthame",
"app_customer"."lastname”, "app_customer"."discount”

FROM "app customer" WHERE
("app_customer"."discount" <7 OR
‘app_customer"."discount” > 12)’

11

Using Annotations —

r = m.Customer.objects. \
filter(id__in=[1,3,6,10,45,12]). \
annotate(doubled=F('discount’) * 2)

q = r.query
Q

SELECT "app_customer"."id", "app_customer"."firsthame”,

"app_customer”."lastname”, "app_customer"."discount”,
("app_customer"."discount" * 2) AS "doubled” FROM "app_customer" WHERE

‘app_customer"."id" IN (1, 3, 0, 10, 45, 12)

Using Annotations with Joins

r = m.Customer.objects. \
values('firstname’, 'lastname’). \
annotate(
Count('orders'),
Sum('orders positions__ product_price’)

)
q = r.query
Q

'SELECT "app_customer"."firstname", "app_customer"."lastname", COUNT ("app_order"."id") AS "orders__count”,
SUM("app_product"."price") AS "orders__positions__product__price_ sum" FROM "app_customer" LEFT OUTER JOII
"app_order" ON ("app_customer"."id" = "app_order"."customer_id") LEFT OUTER JOIN "app_orderposition" ON
("app_order"."id" = "app_orderposition"."order_id") LEFT OUTER JOIN "app_product” ON
("app_orderposition"."product_id" = "app_product"."id") GROUP BY "app_customer"."firsthame",
"app_customer"."lasthame™

Aqgareagations

reset_queries()
r = m.Customer.objects. \
filter(id__in=[1,3,6,10,45,12]).\
aggregate(avg= Avg('discount’), max= Max('discount’))
g = connection.queries|[0]['sql’]
4

'SELECT AVG("app_customer"."discount") AS "avg",
MAX("app_customer"."discount") AS "max" FROM "app_customer" WHERE
‘app_customer”."id" IN (1, 3, o, 10, 45, 12)

14

A Complex Example

r = m.Customer.objects. \
values('lastname’, 'discount’). \
annotate(
s_lastname=F(‘orders__sales_person__lasthame’),
s_commission=F('orders__sales_person__commission’),
total=F('orders__customer__discount') + F('orders__sales_person__commission')
).filter(
(Q(orders__fulfilled__range=('2019-09-01', '2019-12-31")) & Q(total__ gt=15)) |
(Q(orders__fulfilled__range=('2018-01-01', '2018-12-31")) & Q(total__gt=10))
)
g = r.query
g

'SELECT "app_customer"."lastname”, "app_customer"."discount", "app_salesperson"."lasthname" AS "s_lastname”,
"app_salesperson"."commission" AS "s_commission”, (T4."discount" + "app_salesperson"."commission") AS "total" FROM
"app_customer” LEFT OUTER JOIN "app_order" ON ("app_customer"."id" = "app_order"."customer_id") LEFT OUTER JOIN
"app_salesperson" ON ("app_order"."sales_person_id" = "app_salesperson"."id") LEFT OUTER JOIN "app_customer" T4 ON
("app_order"."customer_id" = T4."id") INNER JOIN "app_order" T5 ON ("app_customer"."id" = T5."customer_id") WHERE
((T5."fulfilled" BETWEEN 2019-09-01 00:00:00 AND 2019-12-31 00:00:00 AND (T4."discount" + "app_salesperson"."commission")
> 15) OR (T5."fulfilled" BETWEEN 2018-01-01 00:00:00 AND 2018-12-31 00:00:00 AND (T4."discount" +
"app_salesperson”."commission") > 10))’

Creating the N+1 query problem

reset_queries()
lines =[]
orders = m.Order.objects.filter(created__range=('2019-09-01', '2019-12-31"))
for order in orders:
Sp = order.sales_person
Cu = order.customer
lines.append(f"{sp.lastname} ({sp.commission}) / {cu.lastname} {cu.discount} ")
guer = connection.queries
gs = connection.queries

len(gs):2997

{'sql': 'SELECT "app_salesperson"."id", "app_salesperson"."firstname”,
"app_salesperson'."lastname", "app_salesperson."commission" FROM
"app_salesperson” WHERE "app_salesperson”."id" = 269 LIMIT 21, time":
'0.000", {'sal": 'SELECT "app_customer"."id", "app_customer"."firstname",
"app_customer"."lastname", "app_customer"."discount" FROM "app_customer”
WHERE "app_customer"."id" = 19 LIMIT 21', time': '0.000"

— — —— 16

Addressing the N+1 g oroblem

reset_queries()
lines =[]
orders = m.Order.objects.select_related(,).\
filter(created__range=('2019-09-01', '2019-12-31"))
for order in orders:
sp = order.sales_person
Ccu = order.customer
lines.append(f'{sp.lastname} ({sp.commission})/{cu.lasthame} {cu.discount} ")
guer = connection.queries
gs = connection.queries

[{'sql": 'SELECT "app_order"."id", "app_order"."created", "app_order"."fulfilled",
"app_order"."sales_person_id", "app_order"."customer_id", "app_salesperson"."id",
"app_salesperson”."firsthame", "app_salesperson"."lasthame’, "app_salesperson”."commission”,
"app_customer"."id", "app_customer"."firsthame”, "app_customer"."lasthame",
"app_customer"."discount”" FROM "app_order" INNER JOIN "app_salesperson” ON
("app_order"."sales_person_id" = "app_salesperson”."id") INNER JOIN "app_customer" ON
("app_order"."customer_id" = "app_customer"."id") WHERE "app_order"."created" BETWEEN
\'2019-09-01 00:00:00\' AND \'2019-12-31 00:00:00\", 'time". '0.001'}]

SQL Use Cases and Advantages

thing works use SQL?

>Django’s ORM gives us everything we need
>CRUD operations
>Aggregations and Analytics

>Optimizations (getting only some fields, specify
dependent data)

S0 why use SQL at all?
*Let's look at some potential advantages

19

Addressing the N+1 query problem with SQ

from django.db import connection
reset_queries()
lines =[]

sgl ="""

select sp.lasthame, sp.commission,cu.lastname,cu.discount
from app_order o

inner join app_customer cu on cu.id = o.customer_.id

inner join app_salesperson sp on sp.id = o.sales_person_id
where o.created between '2019-09-01' AND '2019-12-31';

with connection.cursor() as cursor:
cursor.execute(sql)
for row in cursor.fetchall():
a=1
lines.append(f"{row[0]} ({row[1]}) / {row[2]} {row[3]} ")
gs = connection.queries

[{'sqgl": "\n select sp.lasthame, sp.commission,cu.lastname,cu.discount\n from app_order o\n
Inner join app_customer cu on cu.id = o.customer_id\n Inner join app_salesperson sp on sp.id =

0.sales_person_id\n where o.created between '2019-09-01'AND '2019-12-31"\n

", time': '0.000'}]

L

20

Separation of Concerns

~Consider your Database an
external service

> Returned objects define the
iInterface

A Python wrapper and SQL are the
Implementation

21

Easing Performance Analysis and Optimization

E} \\g -Database scaling (still) matters
%'/ , / g ()

SO>S (2> >

Write Integra’[e

Review Optimize Write
Plmi2 Python

Queries SQL

Readabilit

>SQL can be verbose...
>... but as a declarative language, it is not hard to read...
>...and by structuring your queries, you can make it even more readable

with priced_orders as (
select o.id as id, sum(ap.price) as sum
from app_order o
join app_orderposition od on o.id = od.order_id
join app_product ap on ap.id = od.product_id
group by ap.id

)

select sp.lastname,sum(sp.commission * po.sum / 100) as com
from app_order o

join priced_orders po on po.id = o.id

join app_salesperson sp on sp.id = o0.sales_person_id

group by o.sales_person_id

order by 2 desc;

23

Writing Code

Do you like IDEs? Code Completion? Supported Refactorings?

*|IDEs have an easier time understanding your database then your Django
mode|

select * from app_product
jo
2 Jjoin app_orderposition ao on app_product.id = ao.product_1id
join
2 Join app_productpart_products app on app_product.id = app.p.
2 Jjoin app_productpart ap on app_product.name = ap.name

2 Joln auth_group ag on app_product.name = ag.name

2 join auth_permission ap on app_product.name = ap.name CSVv +

2 join django_migrations dm on app_product.name = dm.name

2 Jjoin sqglite_master sm on app_product.name = Sm.name
2 Jjoin sqglite_sequence SS on app_product.name = sS.name
left join

cross join

S MMAM WA W

]

]

]

]

]

]

~d and * 1T will move caret down and up inthe editor Next Tip

»Also, if want to have exactly this SQL, writing is simpler than tuning

24

Commonalit

>Your non-Django team members and users may understand SQL better
than Django's ORM.

>Business Analyst may provide you with queries they want in their
dashboard

And the JAVA team two offices over will understand what you do

25

Finding Information

>Django is well documented...
>... but it iIs only one of many ORMs...
-and there is still more googleable knowledge about SQL

\/

26

Combining SQL and Django

Best of both worlds: Getting Objects with Raw Queries

sqgl = "select “from app_customer where id = 102;"
raw_query_set = m.Customer.objects.raw(sql)
customer = raw_query_set[0]

customer.lasthame

— — ———— 28

Getting Objects and Renaming Fields

Sql — nmimn
select
1

I,

1

raw_query_set = m.Customer.objects.raw(sql)

customer = raw_query_set|[0]
a = customer

Getting Partial Objects

Sql — mmn

select id. pp_customer
where discount > 8;

raw_query_set = m.Customer.objects.raw(sql)
customer = raw_query_set|[0]

In = customer.lasthame

30

Raw SQL and Parameters

sgl ="""

select id, firsthame from app_customer

where discount > %s

order by discount;

raw_query_set = m.Customer.objects.raw(sql, [8])
customer = raw_query_set[0]

In = customer.lastname

31

Some Caveat...

Sql — mmn
select id, firsthame from app_customer

where discount > %s
order bv discount

raw_query_set = m.Customer.objects.raw(sal, [8])
customer = raw_query_set[0]
N = customer.lasthame

32

Raw SQL in other Places

rsql = RawSQL(

select sum(a.quantify * ap.price) from app_customer c
left join app_order ao on c.id = ao.customer_.id
left join app_orderposition a on ao.id = a.order_id
left join app_product ap on ap.id = a.product_id
where c.discount > 9
group by c.id
order by c.discount
|
)

r = m.Customer.objects filter(discount__gt=9).order_by('discount’)
r2 = r.annotate(tot = rsql)

33

Look, No Objects: Using Django's Database Connections

from django.db import connection
sgl = "select “from app_customer where id = 102;"
with connection.cursor() as cursor:
cursor.execute(sql)
row = cursor.fetchone()

Bypassing Django - Why and How

import sqlite3

connection = sqglite3.connect(DBPATH)

cursor = connection.cursor()

cursor.executescript("""

begin;

insert into app_customer (firsthame, lastname, discount)
values (‘Ex', 'Ample’, 10);

insert into app_customer (firsthame, lastname, discount)
values (‘John’, 'Doe’, 14);

commit;

mnmn ll)

connection.close()

35

Drawback of SQL in Django

Drawback : Boilerplate Code

*An ORM may be inefficient at runtime
*No ORM may be inefficient at write time

>Without an ORM, you will have to prepare
the data you pass into you views...

Drawback : Loss of Abstraction _

>Django helps to abstract from your database

*|f you go for SQL, you will need to think about
your DBMS's SQL dialect

Loss of Features

>Saying 'No' to Django's ORM means we lose
features

>Signals
>Migrations
*Admin’?

>

Options

RawSQL

Native

Connection

Connection

~ Za

Django p) e——

=——————————— = == —- o
o S . | 4
& S R R e === —

40

Review: SQL, Django - How and Wh

>Use Django's ORM for Models and simple CRUD Operations

*|f you want objects and filters and annotate get to
complicated, give raw SQL a try.

*|f your organization already has the queries you need, don't
reinvent the wheel

*|f you don't want objects, directly use the Django connection

*|f you need different connection parameters, go for a native
connection

41

Thank You

