
Stefan Baerisch, stefan@stbaer.com, 2020-11-07

Learning Rust with Humility

1kid image: freepik/colorfuelstudio

and Three Ideas

2

Idea 1Know the Challenges

Building a Desktop App

3

Qt
Build Process
Dependencies

Artificial Complexity of C++

Electron Outdated Dependencies
Overall Architecture

Webview
&

Rust
Some Extra

Integration Work

image: freepics / macrovector

The App

4

ShellFrontend

Backend

Vue.js Swift / AppKit

Rust / Actixweb
(Static Library)

(Embedded
Resource)

(Signed App
Bundle)

Lessons Learned from Learning

5
image: freepik/macrovector

Hard to Learn Much to Learn

Different Things to Learn

What makes Languages Hard to Learn

6

4) Changes

1) Language Concepts
Syntax

2) Ecosystem
Build System
Libraries
Package Manager

3) Context
Product
Documentation
People

Rust as a Programming Language to Learn

7

 1) Language

4) Changes

2) Ecosystem

Concepts First Language (Ownership)

Cargo
Small Std, many competing Libraries

3) Context
Still relatively small Language
Good Documentation
Mostly welcoming community

Language and Std quite stable
Many changes in crates

Learning Rust

8

 1) Language

4) Changes

2) Ecosystem

3) Context

Rust’s Learning Curve is Frontloaded

9

Idea 2Practice

Lessons Learned from Learning

10

Theory Practice

Do Something
New

Review Experience
and Results

Refactor Learn

Rust Learning Roadmap

11

Ownership / Basic Syntax Practice

Collections / Smart Pointers Practice

Review
Limitations

Choose
Goal Practice

Multithreading
Collections
Traits
Libraries

12

Idea 3Humility

Why Learning (with) Humility

13

Bored Overwhelmed

Ambitious StartHumble Start

It is more productive start humble, even if it is potentially less
productive

Why Learning (with) Humility

14

Skill Areas

Difficulty

Concepts
Doing

Humble, slow approach Risky, potentially
fast approach

Humbly Learning Rust (1/2)

15

Simple Code is Ok (to start with)

Limited Code is Ok (to start with)

Inefficient Code is Ok (to start with)

if / else before match
write complex programs

std before crate

clone() sync I/O

Humbly Learning Rust (2/2)

16

Unsafe Code is not Ok (to start with)
would make it harder to reason about the code

Boring is Ok (to start with)
no non-std macros
no nightly

Small Steps are Ok (always)
gives a working state to step back to
keeps mental load low

Summary

17

See Do Refactor

Extend

Concept / Syntax Implement Review Redo

Larger Project
More Features

Better Libraries
More “Best Practices”

Rust Learning Resources

18

Concept Books Exercises

Examples Book

Other Books / Book
Example Code

Experiments

Own Projects

The Rust Programming Language

Rust by Example

Rust in Action Mastering Rust 2nd

LeetCode

Port Something

Command Line
Apps in Rust
More Book
Example Code

Other Projects
Source Code

RosettaCode

Apps before Libraries

Stefan Baerisch, stefan@stbaer.com, 2020-11-07

Thank you!

19

