Search Options In Django

Finding what you mean, not only what you type

Stefan Baerisch, stefan@stbaer.com, 2020-09-19

About

Stefan Baerisch
stefan@stbaer.com

Software since 2005
Python since 20006

Project Management/ Test
Management since 2010

Freelance Software Engineer
since 2020

Some Background on Fulltext Search

(Fulltext-) Search

Search in some Text

Documents, Tweets, Emails, Patents, Websites, Product Descriptions, Product
Reviews, Transcripts....

Language, Document lengths,

Image from freepics premium / @tutatama

Fulltext Seach - Why? _

(SQL-) Query
Exact Match <o———>

Returns Set of C=D

Documents

Give me whatl say <l ——=>

Search

Fuzzy Match (Query /
Document Rewriting)

Returns Relevance-Sorted
List of Documents

Give me what | mean

Document and Term Rewriting

“Barisch Pthyon 2020
v
o I

Query Rewrite

Document Rewrite

Barisch => Text: Baerisch
Pthyon => Text: Python
Date: 2020

Relevance

How manage pages of results do you look at ?

We want everything
on the first page

We want Ranking

Next 5 Hits >

What makes a document relevant?

Terms present in document? In all documents?
Term position(s) iIn document?
Document specific factors (new, frequenly seen)

Users specific factors (similar to others / recommendation /)
Not manipulated (think black SEO)

Other Aspects of Good Search

Product / User View

Fast
Current
Correct

Relevant
UX fits Users

> Latency /throughput of queries

> Quick indexing / updates

™ Precision / Recall

> Subjective, what do users thing

AANARARA

> Can query language express what
users want?

Implementation / Operations View

Scalable

Well documented &
Well known

Maintainable

Easy things easy, hard
things possible

<

™~ #docs/# queries

documentation, books,

<

experience reports
monitoring / deploy /

<

operate / integrate
minutes to change indexing, flexible

<

>
>
> . .
processing and ranking

What to Search for: Documents

A Search Scenario

Movies!

Amazon Movie Review Dataset|1]

Nice dataset, contains a combination of
structured data and text. ~8 million review

In total
Field Example class FTSReview(models.Model):
product|D BOOOO6HAXW productId = models.CharField(max_length=200, db_index=True)
userlD A1RSDE90N6RSZF userId = models.CharField(max_length=200, db_index=True)
JserName Joe E. Xample name = models.CharField(max_length=200)

_ — review_help_total = models.PositiveIntegerField()
helptulness 9/9 (nine of nine users....) review_help_help = models.PositiveIntegerField()
reviewscore 5.0 review_score = models.FloatField()

time 1042502400 (Epoch) review_time = models.DateTimelfield()
summary Pittsburgh - Home of the OLDIES :zz;:x‘i:war_‘ym; dzgge}z)’(lﬁ;:i;?}do
| have all of the doo wop DVD's and :
text : :
this one is as good....

[1] J. McAuley and J. Leskovec. From amateurs to connoisseurs:
modeling the evolution of user expertise through online reviews.
WWW, 2013.

Using PostgreSQL Fulltext Search

Regular Search

def sql_contains(gstring):
g_summary = Q(review_summary__icontains=qstring)
g_text = Q(review_text__icontains=qstring)
search_qguery = g_summary | g_text
reviews = FTSReview.objects.filter(
search_query
)

return reviews, 1}

SQL Contains Search

Qtype:| SQL Contains v | Search:| water | Search |

2286 SQL Contains Search Results, 846.44008 milliseconds execution time

Arminpasha / great fun to watch

...P>1 like it! A lot. <p>... The tape spent quite some time on the bookshelf but now that I have finally seen it I am in love!<

technoguy "jack" / Forgotten masterpiece full of foreboding

Post Watergate and Vietnam this noir thriller was the last of its kind rich in the counter-culture’s eccentricity to the have-not

Robert M / The worst movie ever made.

Well maybe Manos: Hands of Fate was worse, but I bet the budget for this trash was considerably higher. How do you mak

Fulltext Search in Postgresq|

def sql_search(gstring):
g_summary = Q(review_summary__search=gstring)
g_text = Q(review_text__search=gstring)
search_query = g_summary | g_text
reviews = FTSReview.objects.filter(
search_guery
)

return reviews, {} Requires: ‘'django.contrib.postgres',

SQL Search Search

Qtype: SQL Search v | Search:| water || Search |

1729 SQL Search Search Results, 9736.01174 milliseconds execution time

Robert M / The worst movie ever made.

Well maybe Manos: Hands of Fate was worse, but I bet the budget for this trash was considerably higher. How do you make an 89 minute suspense movie? Especially one ...

Hikaru / What a weak story line! Too bad for Travolta

Harold Becker(Director) tried to embed a taste of suspense into the story. Well, who are to blame? Despite the fact that Travolta scored yet another Razzie nomination for Worst Actor ...

L. Alper / Entertaining but....

This is a relatively fast-paced, no-brainer action flick. The trouble is in the details. Many, many details.

The 1st & biggest problem in my view is where are they? ...

13

Ranked Search in Postgresq|

def ranked_fts_search(qgstring):
search_vector =/SearchVector('review_summary', weight="A") + \
SearchVector('review_text', weight='B')
search_query = SearchQuery(qgstring,config="'english')
reviews = FTSReview.objects.annotate(
rank=SearchRank(search_vector, search_query)
) .filter(rank__gte=0.3).order_by('-rank"')
return reviews, 1}

Ranked FTS with Cutoff Search

Qtype:| Ranked FTS with Cutoff v | Search:| water || Search |

285 Ranked FTS with Cutoff Search Results, 9957.66902 milliseconds execution time
Howard M. Kindel / Water Water Everywhere - Not

Like "Flow," another great film concerning the coming - and inevitable - water crisis, "Blue Gold" relies primarily on the work of Canadian Maude Barlow. It presents the current state ...

Klaatu / Water, water everywhere...

... but not a drop to drink. Doesn't just apply to sea water these days. What an eye-opening film which everyone should watch. Our water is no longer our own, ...

David C. Oshel "grikdog" / Is it tea to the water, or water to the tea?

I can never remember. Julie Andrews sang a little song about "pouring out"” when this first came out, but Disney cut most of the running tea gags on re-release -- ...

14

Indexing Text

1 Selects, Inserts,
Updates, etc.

N

oo 7
Django

FTS Search
Operations

2 Trigger, FTS
Update on
Change

15

Indexing Text - Database

class FTSReview(models.Model):

- — - = — . - a - - — -

review_index = SearchVectorField(null=True)
class Meta:

indexes = [GinIndex(fields=["review index"])]

class Migration(migrations.Migration):

dependencies = [

]

('django_search_app', '0002_auto_20200716_0758'),

migration = '"'’'

CREATE TRIGGER review_index_update BEFORE INSERT OR UPDATE
ON django_search_app_ftsreview FOR EACH ROW EXECUTE FUNCTION
tsvector_update_trigger(review_index, 'pg_catalog.english', review_summary, review_text);

UPDATE django_search_app_ftsreview set ID = ID;

reverse_migration = "'’

DROP TRIGGER review_index_update ON django_search_app_ftsreview;

16

Indexing Text - Query

def ranked_indexed_fts_search(qgstring):
search_vector = F("review_index")
search_query = SearchQuery(agstring)
search_rank = SearchRank(search_vector, search_guery)
reviews = FTSReview.objects.annotate(rank=search_rank
) . filter(rank__gte=0.05).order_by('-rank')
return reviews, 4}

Indexed Ranked FTS with Cutoff Search

Qtype:| Indexed Ranked FTS with Cutoff v | Search:| water | Search |

1729 Indexed Ranked FTS with Cutoff Search Results, 398.38004 milliseconds execution time
Robert D. Steele / Worthwhile, Not as Epic as I Hoped, But Still Tops

I'm watching this in the context of reading and reviewing twelve books on water before I leave Guatemala. Having read Marq de Villier's book, Water: The Fate of Our ...

Dr Stuart Jeanne Bramhall "Dr Stuart Jeanne B.../ scary flick

The most important take-home message from this film is that water scarcity is a much more serious and urgent problem - especially in the industrial north - than climate change.<br ...

17

Using elasticsearch

elasticsearch

Search Engine...
- pbased on Lucene

r - REST API
- - Rich In features
elasticsearch _ Scaleable

- Commercial and Open Source

for a pure Open Source Alternative, see
Apache Solr

Elasticsearch with Django - Design Decisions

Postgres

Regular Search
Data Index

N/

Search Index
Update via
Trigger

Postgres & Elastic Search

4———> Elasticsearch

]

Regular

]

Search

Data - Se€arch Index - |ndex

e
Abstraction

Library?

Update
via ???

|
Trigger?

(Async?)
Application
Code

20

Search with Elasticsearch & Django

Handle Search Form

Send Elastic Query
Get IDs from Elastic Get Facets, etc from
Results Elastic Results

Get Documents from
Postqgres

Prepare Data Iin View

Render Template

21

Implementation Decisions

We there are different Way to add Elasticsearch to our
Django Application

Official Python Elasticsearch Client

https://github.com/elastic/elasticsearch-py

Abstraction Libraries : Haystack

https://github.com/django-haystack/django-haystack

Direct Use of the REST AP Used here

22

Index Definition in Elasticsearch

def create_index(index_name):
put(index_name)

settings = {
"analysis": { {J
"englishStopWords": {
lltypell : llstopll,
"stopwords": "_english_"
}
},

"analyzer": {
"reviewAnalyzer": {
"tokenizer": "standard",
"filter": [
"Lowercase",
"englishStopWords"

}

post (f"{index_name}/_close")
put (f"{index_name}/_settings", settings)
post(f"{index_name}/_open")

mapping = {'properties’:
{'name': {'type': 'keyword'},

'productId': {'type': 'keyword'},
'review_help_help': {'type': 'long'},
'review_help_total': {'type': 'long'},
'review_score': {'type': 'float'},
'review_summary': {

"type': 'text’,

‘analyzer': "reviewAnalyzer",
'search_analyzer': "reviewAnalyzer"
},
'review_text': {
"type': 'text’,
‘analyzer': "reviewAnalyzer",
'search_analyzer': "reviewAnalyzer"
,
'review_time': {'type': 'date'},
'userId': {'type': 'keyword'}
}

}
put (f"{index_name}/_mapping"”, mapping)

23

Indexing Documents

def write_docs(index_name, docs):
for i, (eid, doc) in enumerate(docs.items()):

if 1 % 100 = 0:
logging.info(f"Elastic {i} / {len(docs)}")
entry = {}
for k, v in doc.items():
if isinstance(v, (datetime.date, datetime.datetime)):
v = v.isoformat()
entry[k] = v
put (f"{index_name}/_doc/{eid}", entry)

entry :

01
01
01
01
01
01
01
01
01

‘productld’ = {str} 'BO03AI2VGA'

‘userld' = {str} 'A14THP4LYPWMSR'

'‘name' = {str} 'Brian E. Erland "Rainbow Sphinx""

'review_help_total' = {int} 7

'review_help_help' = {int} 7

'review_score' = {float} 3.0

‘review_time' = {str} '2007-06-25T00:00:00+00:00"

‘review_summary' = {str} ""There Is So Much Darkness Now ~ Come For The M
‘review_text' = {str} 'Synopsis: On the daily trek from Juarez, Mexico to El Paso

24

Search Example

def faceted_elastic_search(gstring): def dinner_search(index_name, guery):
eresults = multi_search_facets("reviews"”, gstring) search = {
facets = {} ‘guery”: guery,
"stored_fields": [],
for k, vs in eresults['aggregations'].items(): "size": 10000,
facets[k] = {} "aggs": {
for b in vs|['buckets']: "score": {
facets[k][b['key']] = b['doc_count'] “terms”: {

“field”: “review_score”,
id_list = [v['_id'] for v in eresults['hits']['hits']] "order": {" _count”: "desc"}
reviews = FTSReview.objects.filter(id__in=id_1list) }
return reviews, facets },

"user": {
def multi_search_facets(index_name, gstring, size): “terms”: {
query = { "field”: “"userld”,
"multi_match": { "order”: {"_count": "desc"}
"query": qstring, }
"fields": ["review_text", ["review _summary”~s"] }
+ "product"”: {
k _ _ . . "terms”: {
return inner_search(index_name, query,size=size) "field": "productId”,
"order”: {"_count": "desc"}
}
}
}
}

return post(f”"{index name}/ search”, search)

25

Elasticsearch Results

Faceted Elastic Search Search

of Results:| 10 | Search Types:| Faceted Elastic Search

Facets

SCore

50:
40:
30:
1.0:
20:

618
334
192
107
103

v | Search:|water

] | Search

product

BO02PBP8HW : 39
BOOOOSVOIIL : 33
B000063UUS : 33
B0O0005VOLJ : 26
7883704540 : 21
BOOOVBIJEFK : 21
BO05SZMUPSK : 21
BOOINFNFMQ : 18
BO00OOSMFOS8 : 15
B0O01G7Q0Z0 : 15

user

AID2COWDCSHUWZ

: 9

A3KF4IP2MUS8QQ : 7

ASMVIKKHXS5I1FYT :
AK6UVFSUOTNXH : 7
AI1PTCZ2FM2547 : 6
A3M2WWO0OPO34B94 :

7

6

Al152C8GYY25HAH : 5

A25ZVI6RHIKASL : 5
A2E3IB2ZHIT7QX] : 5
A6VXZIEEPRTLV : 5

1354 Faceted Elastic Search Search Results, 18.79907 milliseconds execution time

Dayna Newman "Slasher Diva" / There's a Muppet in the water

This was one of the most ridiculous movies I have ever seen..
The main problem being it takes itself seriously at least Piranha was campy and the effects in piranha ...

David C. Oshel "grikdog" / Is it tea to the water, or water to the tea?

I can never remember. Juliec Andrews sang a little song about "pouring out” when this first came out, but Disney cut most of the running tea gags on re-release -- ...

James Donovan "movie lover" / Dead in the water

I really wanted to like this film. I read the book for the first time about four weeks ago and was drooling with anticipation for this film to be released. ...

26

Summary

Deciding on a Search Solution

Only direct
match /
regex

What Search do you want to offer?

Ranking / more complex search

Which search system will you use?

- one system

- good understanding of

performance

- N0 sync problems
-PG features sufficient
-PG expertise

PostgreSQL,
not using
fulltext search

Small difference
(Qquery / index changes)

PostgreSQL,
with fulltext
search & index

- decoupled systems

- opportunity for perf
tuning

- willingness to addres
sync

- need / want Elastic
features

-PG & Elastic expertise

—>

I

PostgreSQL as source
of truth / Elastic for
search features

|

Significant difference

(additional system and sync code)
— — — 28

Personal Impressions (yours mlght dlffer)

Postares Postgres &
9 Elastic Search

Search, Indexing,
Preprocessing and Ranking
Support

One, system, updates via
trigger.

Depends on use case

Larger Selection of Ranking and
Preprocessing Options. Various
related features (Aggregations /
Facets)

Need to keep two systems in
sync

Depends on use case, can be
scaled independently from
Postgres

— ———— 29

Summary

Search is useful
Good search, relevance is hard.

Depends on tuning, know how, technology is ‘only’ a
necessary enabler

We have good options available:
Postgres FTS, more or less out of the box

Elastic (or Salr, ...) to build an independent search system

30

Thank you!

https://github.com/stbaercom/djangocon_eu_2020_searchoptions

Stefan Baerisch, stefan@stbaer.com, 2020-04-07

