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Some Background on Fulltext Search




(Fulltext-) Search

Search in some Text

Documents, Tweets, Emails, Patents, Websites, Product Descriptions, Product
Reviews, Transcripts....

Language, Document lengths,
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Fulltext Seach - Why? _

(SQL-) Query
Exact Match <o———>

Returns Set of C=D

Documents

Give me whatl say <l ——=>

Search

Fuzzy Match ( Query /
Document Rewriting)

Returns Relevance-Sorted
List of Documents

Give me what | mean




Document and Term Rewriting

“Barisch Pthyon 2020
v
o I

Query Rewrite

Document Rewrite

Barisch => Text: Baerisch
Pthyon => Text: Python
Date: 2020




Relevance

How manage pages of results do you look at ?

We want everything
on the first page

We want Ranking

Next 5 Hits >

What makes a document relevant?

Terms present in document? In all documents?
Term position(s) iIn document?
Document specific factors (new, frequenly seen)

Users specific factors (similar to others / recommendation /)
Not manipulated (think black SEO)




Other Aspects of Good Search

Product / User View

Fast
Current
Correct

Relevant
UX fits Users

> Latency /throughput of queries

> Quick indexing / updates

™ Precision / Recall

> Subjective, what do users thing

AANARARA

> Can query language express what
users want?

Implementation / Operations View

Scalable

Well documented &
Well known

Maintainable

Easy things easy, hard
things possible

<

™~ #docs/# queries

documentation, books,

<

experience reports
monitoring / deploy /

<

operate / integrate
minutes to change indexing, flexible

<

>
>
> . .
processing and ranking




What to Search for: Documents




A Search Scenario

Movies!

Amazon Movie Review Dataset|1]

Nice dataset, contains a combination of
structured data and text. ~8 million review

In total
Field Example class FTSReview(models.Model):
product|D BOOOO6HAXW productId = models.CharField(max_length=200, db_index=True)
userlD A1RSDE90N6RSZF userId = models.CharField(max_length=200, db_index=True)
JserName Joe E. Xample name = models.CharField(max_length=200)

_ — review_help_total = models.PositiveIntegerField()
helptulness 9/9 (nine of nine users....) review_help_help = models.PositiveIntegerField()
reviewscore 5.0 review_score = models.FloatField()

time 1042502400 ( Epoch) review_time = models.DateTimelfield()
summary Pittsburgh - Home of the OLDIES :zz;:x‘i:war_‘ym; dzgge}z)’(lﬁ;:i;?}do
| have all of the doo wop DVD's and :
text : :
this one is as good....

[1] J. McAuley and J. Leskovec. From amateurs to connoisseurs:
modeling the evolution of user expertise through online reviews.
WWW, 2013.




Using PostgreSQL Fulltext Search




Regular Search

def sql_contains(gstring):
g_summary = Q(review_summary__icontains=qstring)
g_text = Q(review_text__icontains=qstring)
search_qguery = g_summary | g_text
reviews = FTSReview.objects.filter(
search_query
)

return reviews, 1}

SQL Contains Search

Qtype:| SQL Contains v | Search:| water | Search |

2286 SQL Contains Search Results, 846.44008 milliseconds execution time

Arminpasha / great fun to watch

...P>1 like it! A lot. <p>... The tape spent quite some time on the bookshelf but now that I have finally seen it I am in love!<

technoguy "jack" / Forgotten masterpiece full of foreboding

Post Watergate and Vietnam this noir thriller was the last of its kind rich in the counter-culture’s eccentricity to the have-not

Robert M / The worst movie ever made.

Well maybe Manos: Hands of Fate was worse, but I bet the budget for this trash was considerably higher. How do you mak




Fulltext Search in Postgresq|

def sql_search(gstring):
g_summary = Q(review_summary__search=gstring)
g_text = Q(review_text__search=gstring)
search_query = g_summary | g_text
reviews = FTSReview.objects.filter(
search_guery
)

return reviews, {} Requires: ‘'django.contrib.postgres',

SQL Search Search

Qtype: SQL Search v | Search:| water || Search |

1729 SQL Search Search Results, 9736.01174 milliseconds execution time

Robert M / The worst movie ever made.

Well maybe Manos: Hands of Fate was worse, but I bet the budget for this trash was considerably higher. How do you make an 89 minute suspense movie? Especially one ...

Hikaru / What a weak story line! Too bad for Travolta

Harold Becker(Director) tried to embed a taste of suspense into the story. Well, who are to blame? Despite the fact that Travolta scored yet another Razzie nomination for Worst Actor ...

L. Alper / Entertaining but....

This is a relatively fast-paced, no-brainer action flick. The trouble is in the details. Many, many details.<br /><br />The 1st & biggest problem in my view is where are they? ...
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Ranked Search in Postgresq|

def ranked_fts_search(qgstring):
search_vector =/SearchVector('review_summary', weight="A") + \
SearchVector('review_text', weight='B')
search_query = SearchQuery(qgstring,config="'english')
reviews = FTSReview.objects.annotate(
rank=SearchRank(search_vector, search_query)
) .filter(rank__gte=0.3).order_by('-rank"')
return reviews, 1}

Ranked FTS with Cutoff Search

Qtype:| Ranked FTS with Cutoff v | Search:| water || Search |

285 Ranked FTS with Cutoff Search Results, 9957.66902 milliseconds execution time
Howard M. Kindel / Water Water Everywhere - Not

Like "Flow," another great film concerning the coming - and inevitable - water crisis, "Blue Gold" relies primarily on the work of Canadian Maude Barlow. It presents the current state ...

Klaatu / Water, water everywhere...

... but not a drop to drink. Doesn't just apply to sea water these days. What an eye-opening film which everyone should watch. Our water is no longer our own, ...

David C. Oshel "grikdog" / Is it tea to the water, or water to the tea?

I can never remember. Julie Andrews sang a little song about "pouring out"” when this first came out, but Disney cut most of the running tea gags on re-release -- ...
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Indexing Text

1 Selects, Inserts,
Updates, etc.

N

oo 7
Django

FTS Search
Operations

2 Trigger, FTS
Update on
Change
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Indexing Text - Database

class FTSReview(models.Model):

- — - = — . - a - - — -

review_index = SearchVectorField(null=True)
class Meta:

indexes = [GinIndex(fields=["review index"])]

class Migration(migrations.Migration):

dependencies = [

]

('django_search_app', '0002_auto_20200716_0758'),

migration = '"'’'

CREATE TRIGGER review_index_update BEFORE INSERT OR UPDATE
ON django_search_app_ftsreview FOR EACH ROW EXECUTE FUNCTION
tsvector_update_trigger(review_index, 'pg_catalog.english', review_summary, review_text);

UPDATE django_search_app_ftsreview set ID = ID;

reverse_migration = "'’

DROP TRIGGER review_index_update ON django_search_app_ftsreview;
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Indexing Text - Query

def ranked_indexed_fts_search(qgstring):
search_vector = F("review_index")
search_query = SearchQuery(agstring)
search_rank = SearchRank(search_vector, search_guery)
reviews = FTSReview.objects.annotate(rank=search_rank
) . filter(rank__gte=0.05).order_by('-rank')
return reviews, 4}

Indexed Ranked FTS with Cutoff Search

Qtype:| Indexed Ranked FTS with Cutoff v | Search:| water | Search |

1729 Indexed Ranked FTS with Cutoff Search Results, 398.38004 milliseconds execution time
Robert D. Steele / Worthwhile, Not as Epic as I Hoped, But Still Tops

I'm watching this in the context of reading and reviewing twelve books on water before I leave Guatemala. Having read Marq de Villier's book, <a
href="http://www.amazon.com/gp/product/0618127445">Water: The Fate of Our ...

Dr Stuart Jeanne Bramhall "Dr Stuart Jeanne B.../ scary flick

The most important take-home message from this film is that water scarcity is a much more serious and urgent problem - especially in the industrial north - than climate change.<br ...
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Using elasticsearch




elasticsearch

Search Engine...
- pbased on Lucene

r - REST API
- - Rich In features
elasticsearch _ Scaleable

- Commercial and Open Source

for a pure Open Source Alternative, see
Apache Solr




Elasticsearch with Django - Design Decisions

Postgres

Regular Search
Data Index

N/

Search Index
Update via
Trigger

Postgres & Elastic Search

4———> Elasticsearch

]

Regular

]

Search

Data - Se€arch Index - |ndex

e
Abstraction

Library?

Update
via ???

|
Trigger?

(Async?)
Application
Code
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Search with Elasticsearch & Django

Handle Search Form

Send Elastic Query
Get IDs from Elastic Get Facets, etc from
Results Elastic Results

Get Documents from
Postqgres

Prepare Data Iin View

Render Template
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Implementation Decisions

We there are different Way to add Elasticsearch to our
Django Application

Official Python Elasticsearch Client

https://github.com/elastic/elasticsearch-py

Abstraction Libraries : Haystack

https://github.com/django-haystack/django-haystack

Direct Use of the REST AP Used here
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Index Definition in Elasticsearch

def create_index(index_name):
put(index_name)

settings = {
"analysis": { {J
"englishStopWords": {
lltypell : llstopll,
"stopwords": "_english_"
}
},

"analyzer": {
"reviewAnalyzer": {
"tokenizer": "standard",
"filter": [
"Lowercase",
"englishStopWords"

}

post (f"{index_name}/_close")
put (f"{index_name}/_settings", settings)
post(f"{index_name}/_open")

mapping = {'properties’:
{'name': {'type': 'keyword'},

'productId': {'type': 'keyword'},
'review_help_help': {'type': 'long'},
'review_help_total': {'type': 'long'},
'review_score': {'type': 'float'},
'review_summary': {

"type': 'text’,

‘analyzer': "reviewAnalyzer",
'search_analyzer': "reviewAnalyzer"
},
'review_text': {
"type': 'text’,
‘analyzer': "reviewAnalyzer",
'search_analyzer': "reviewAnalyzer"
,
'review_time': {'type': 'date'},
'userId': {'type': 'keyword'}
}

}
put (f"{index_name}/_mapping"”, mapping)
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Indexing Documents

def write_docs(index_name, docs):
for i, (eid, doc) in enumerate(docs.items()):

if 1 % 100 = 0:
logging.info(f"Elastic {i} / {len(docs)}")
entry = {}
for k, v in doc.items():
if isinstance(v, (datetime.date, datetime.datetime)):
v = v.isoformat()
entry[k] = v
put (f"{index_name}/_doc/{eid}", entry)

entry :

01
01
01
01
01
01
01
01
01

‘productld’ = {str} 'BO03AI2VGA'

‘userld' = {str} 'A14THP4LYPWMSR'

'‘name' = {str} 'Brian E. Erland "Rainbow Sphinx""

'review_help_total' = {int} 7

'review_help_help' = {int} 7

'review_score' = {float} 3.0

‘review_time' = {str} '2007-06-25T00:00:00+00:00"

‘review_summary' = {str} ""There Is So Much Darkness Now ~ Come For The M
‘review_text' = {str} 'Synopsis: On the daily trek from Juarez, Mexico to El Paso
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Search Example

def faceted_elastic_search(gstring): def dinner_search(index_name, guery):
eresults = multi_search_facets("reviews"”, gstring) search = {
facets = {} ‘guery”: guery,
"stored_fields": [],
for k, vs in eresults['aggregations'].items(): "size": 10000,
facets[k] = {} "aggs": {
for b in vs|['buckets']: "score": {
facets[k][b['key']] = b['doc_count'] “terms”: {

“field”: “review_score”,
id_list = [v['_id'] for v in eresults['hits']['hits']] "order": {" _count”: "desc"}
reviews = FTSReview.objects.filter(id__in=id_1list) }
return reviews, facets },

"user": {
def multi_search_facets(index_name, gstring, size): “terms”: {
query = { "field”: “"userld”,
"multi_match": { "order”: {"_count": "desc"}
"query": qstring, }
"fields": ["review_text", ["review _summary”~s"] }
+ "product"”: {
k _ _ . . "terms”: {
return inner_search(index_name, query,size=size) "field": "productId”,
"order”: {"_count": "desc"}
}
}
}
}

return post(f”"{index name}/ search”, search)
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Elasticsearch Results

Faceted Elastic Search Search

# of Results:| 10 | Search Types:| Faceted Elastic Search

Facets

SCore

50:
40:
30:
1.0:
20:

618
334
192
107
103

v | Search:|water

] | Search

product

BO02PBP8HW : 39
BOOOOSVOIIL : 33
B000063UUS : 33
B0O0005VOLJ : 26
7883704540 : 21
BOOOVBIJEFK : 21
BO05SZMUPSK : 21
BOOINFNFMQ : 18
BO00OOSMFOS8 : 15
B0O01G7Q0Z0 : 15

user

AID2COWDCSHUWZ

: 9

A3KF4IP2MUS8QQ : 7

ASMVIKKHXS5I1FYT :
AK6UVFSUOTNXH : 7
AI1PTCZ2FM2547 : 6
A3M2WWO0OPO34B94 :

7

6

Al152C8GYY25HAH : 5

A25ZVI6RHIKASL : 5
A2E3IB2ZHIT7QX] : 5
A6VXZIEEPRTLV : 5

1354 Faceted Elastic Search Search Results, 18.79907 milliseconds execution time

Dayna Newman "Slasher Diva" / There's a Muppet in the water

This was one of the most ridiculous movies I have ever seen..<br />The main problem being it takes itself seriously at least Piranha was campy and the effects in piranha ...

David C. Oshel "grikdog" / Is it tea to the water, or water to the tea?

I can never remember. Juliec Andrews sang a little song about "pouring out” when this first came out, but Disney cut most of the running tea gags on re-release -- ...

James Donovan "movie lover" / Dead in the water

I really wanted to like this film. I read the book for the first time about four weeks ago and was drooling with anticipation for this film to be released. ...
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Summary




Deciding on a Search Solution

Only direct
match /
regex

What Search do you want to offer?

Ranking / more complex search

Which search system will you use?

- one system

- good understanding of

performance

- N0 sync problems
-PG features sufficient
-PG expertise

PostgreSQL,
not using
fulltext search

Small difference
(Qquery / index changes)

PostgreSQL,
with fulltext
search & index

- decoupled systems

- opportunity for perf
tuning

- willingness to addres
sync

- need / want Elastic
features

-PG & Elastic expertise

—>

I

PostgreSQL as source
of truth / Elastic for
search features

|

Significant difference

(additional system and sync code)
— — — 28




Personal Impressions (yours mlght dlffer)

Postares Postgres &
9 Elastic Search

Search, Indexing,
Preprocessing and Ranking
Support

One, system, updates via
trigger.

Depends on use case

Larger Selection of Ranking and
Preprocessing Options. Various
related features (Aggregations /
Facets)

Need to keep two systems in
sync

Depends on use case, can be
scaled independently from
Postgres

— ———— 29




Summary

Search is useful
Good search, relevance is hard.

Depends on tuning, know how, technology is ‘only’ a
necessary enabler

We have good options available:
Postgres FTS, more or less out of the box

Elastic (or Salr, ...) to build an independent search system
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Thank you!

https://github.com/stbaercom/djangocon_eu_2020_searchoptions

Stefan Baerisch, stefan@stbaer.com, 2020-04-07




